With more solar and wind, North America’s grid is getting more reliable

By Will Driscoll

The North American electric grid’s annual checkup shows that it is becoming increasingly reliable, as solar and wind gain share, according to the North American Electric Reliability Corporation (NERC).

For solar, one grid reliability factor—frequency response—is of great interest because of concern, as stated in the report, that “a changing resource mix and increase in renewable resources” may have a “potential impact on frequency response performance.” 

Frequency response has steadily improved since 2013, as shown in the last two columns of this table (i.e., one or both measures are improving in each interconnection):

The report notes that inverters from solar and wind farms now provide frequency support, alongside the frequency support that has traditionally been provided by synchronous inertia from fossil-fired generators.  (See, for example, a report on solar and frequency support, prepared by California’s grid operator, First Solar, and the National Renewable Energy Laboratories.) 

The 2017 solar eclipse was another bright spot for solar, as “no issues developed” from the transitory loss of mid-day solar power, because utilities had planned for the occurrence—just as they plan for cloudy days.

Beyond frequency response, the report covered all 13 of NERC’s grid reliability metrics. NERC found that all metrics were either improving, unchanged, or stable, with the exception that the Texas Interconnection is expected to have tight reserve margins this summer.  Even there, the report noted that “ERCOT [the Texas grid operator] has a variety of operational tools to help manage tight reserves and maintain system reliability.”

The report provided updates on two incidents related to California wildfires and solar PV inverters.  After the first incident, related to a 2016 wildfire, NERC advised utilities to contact a specific inverter manufacturer to implement a reliability solution specific to that manufacturer’s inverters.  NERC also formed a task force that will produce a guideline for “inverter-based resource performance” to support grid reliability.  After the second incident, related to a 2017 California wildfire, NERC issued a follow-up to the first alert. 

Beginning in 2021, NERC expects to collect data on solar generating units that are 20 MW and larger, as part of its Generation Availability Data System that now covers fossil units and is phasing in wind units.  Utilities use the data for benchmarking the performance of their own generating units.

NERC was certified by the U.S. Federal Energy Regulatory Commission as the nation’s electric reliability organization in 2006, pursuant to the Energy Policy Act of 2005.  Alaska, Hawaii, and Puerto Rico are not included in NERC, although an Alaskan organization has an affiliate membership.

35 to 70 GW of solar, plus wind, could power all freight trucks in the U.S. or Europe

By Will Driscoll

Many truck manufacturers are developing electric freight trucks, whose projected lower costs for fuel and maintenance would, by one estimate, quickly outweigh their higher purchase price. With this cost advantage, electric trucks could ultimately dominate freight trucking. A charging infrastructure for an all-electric continent-wide fleet of freight trucks in the United States or in Europe could be powered by 35 to 70 gigawatts of solar farms, plus an equivalent amount of wind farms.

Tesla and Peterbilt are the first firms to develop electric heavy-freight trucks—the global term for tractor-trailers or Class 8 trucks. BYD already offers medium-sized electric trucks and a larger electric freight truck with a short range, while medium-sized electric trucks have been announced by Daimler, Cummins, Volvo, DAF, and a Navistar/Volkswagen joint venture.

The North American Council on Freight Efficiency predicts that electric trucks will have an “increasing role” in freight transportation. Also relevant—because freight trucks, like city buses, operate many hours per day—is a projection by Bloomberg New Energy Finance that electric city buses will capture 84 percent of global bus sales by 2030, due to low operating costs and declining battery costs.

In the policy arena, a report from the International Council on Clean Transportation, which supports national governments in reducing transport sector pollution, notes that “electric-drive heavy-duty vehicle technologies are essential to fully decarbonize the transport sector.”

These market and policy drivers point to a new market opening for solar power: solar farms, possibly near truck stops, to power electric freight trucks. A spreadsheet calculation shows that 35 to 70 gigawatts of solar power, plus an equivalent amount of wind power, would produce an amount of electricity each year equal to the needs of an all-electric fleet of heavy-freight trucks in the U.S. or in Europe. That’s because by coincidence, the fleets of heavy-freight trucks in the U.S. and Europe travel approximately the same distance each year. (A technical note below provides details of the calculation.)

Pursuing this market opening could help the solar industry maintain its approximate 30 percent global growth rate in recent years, even as the industry keeps expanding. Maintaining a 29% growth rate, deemed “challenging but feasible” in a research studypublished in Science magazine, would result in a global installed base of 10 terawatts of solar power by 2030.

As electric freight trucks become more widely available, solar industry participants could help ensure that charging stations for the trucks are solar-ready, and ultimately solar-powered. This could involve research and decisions regarding optimal placement of charging stations; ensuring that a sufficient number of charging stations is always available to meet growing demand; possibly optimizing charging during times of peak solar and wind production; and providing electricity storage as needed.

Powering electric heavy-freight trucks with solar and wind power would also cut CO2emissions by displacing diesel fuel. Globally, road transport accounts for 22% of energy consumption, of which 30% is long-haul road freight. Therefore, CO2reductions of about 7% (i.e., 30% of 22%) could be achieved by powering heavy-freight trucks with renewable energy, in each region that follows this path.

If most trucking firms ultimately conclude that electric heavy-freight trucks save money, they could aim to replace their diesel trucks with electric trucks as their diesel units reach the end of their useful life. The Bloomberg projection noted above projects that will happen for electric city bus sales by 2030. With global production of heavy-freight trucks estimated by Deloitte at 1.7 million in 2014, the pace of diesel truck replacements could be limited by global manufacturing capacity for electric heavy-freight trucks.

Technical note: The calculation starts with the annual distance traveled by the current U.S. and European fleets of heavy-freight trucks in 2015, as reported by the International Energy Agency; each is approximately 200 billion kilometers. For the energy needed to power a heavy-freight truck, the lower bound analysis uses an estimate of one kilowatt-hour per mile, developed by University of California/Berkeley materials science professor Gerbrand Ceder. The upper bound analysis uses a specification that Tesla reported subsequently for its heavy-freight truck of “less than 2 kWh per mile” (the upper bound uses 2 kWh per mile). Converting kilometers to miles, and kilowatt-hours to gigawatt-hours, and then multiplying shows that 124,000 to 248,000 gigawatt-hours per year would power such a fleet in either the U.S. or Europe. At a U.S. national average capacity factor for a solar farm pegged at 20 percent by the National Renewable Energy Laboratory, 70 to 140 gigawatts of solar would produce this amount of electricity each year (given 8760 hours per year). If solar and wind each provided half the energy needed, solar’s contribution would be 35 to 70 gigawatts.

Sensitivity analysis: Regarding solar’s capacity factor in the U.S., Lawrence Berkeley National Laboratory has reported the median capacity factor for utility-scale solar to be 26 percent. If this were to be the average capacity factor for future utility-scale solar installations, rather than the 20 percent value used above, the solar capacity needed would be reduced accordingly.

Hot Roofs Above Bedrooms Cause Sleep Deprivation—Can You Solve the Cool Roof Puzzle?

By Will Driscoll

People who sleep in a top-floor bedroom under a black asphalt roof are likely to lose sleep on summer nights due to heat from the roof, with serious consequences.  Technically, the fix is simple—coat every black asphalt roof with a white coating—but progress toward that goal is slow.  Can you advise on how to make it happen, in the comments section below?

The issue: black asphalt roofs get really hot, keeping people from sleeping well, and causing real problems

Black asphalt roofs, which are common on Northeast urban row houses (townhouses), “can reach temperatures of 150°F or more in the summer sun,” reports the U.S. Department of Energy.  With or without air conditioning, a roof that hot above your bedroom will radiate heat at you all night long.

And people can’t sleep well when it’s too hot.  A research study using data reported by 765,000 people over 10 years found that “increases in nighttime temperatures amplify self-reported nights of insufficient sleep.”

Losing sleep is far worse than a nuisance.  “People make cognitive errors that matter when they sleep badly, whether crashing vehicles or making poor decisions in the workplace,” said UC Berkeley professor Solomon Hsiang in response to the study, as reported by Bloomberg.  He added, “Students learn poorly when they don’t sleep, and consistent lack of sleep harms people’s health.”

The technically easy solution:  white roof coating of asphalt roofs

Any roofing firm can apply an “elastomeric” white roof coating to a black asphalt roof, which can reduce a roof’s temperature on a 90-degree day from 150°F to 95°F.  (“Elastomeric” means the coating will stretch with the roof as it expands when it’s warm, and contract with the roof as it contracts when it’s cold.)  A homeowner who can safely get up on their own roof, with tools and supplies, can also do the job.  The cost is modest, since the job is relatively small: clean, patch, prime, and apply the finish coat.

But progress in getting black asphalt roofs coated white is slow.  For example in Philadelphia, where people have been talking for a decade about this issue, look closely at the Google Maps satellite view of the city and you will see mostly black roofs, while the roofs that aren’t black are generally gray—a color that provides only about half the cooling benefit of a white roof.

The puzzle:  How to persuade landlords and homeowners to apply white roof coating to black asphalt roofs?

This section offers some possible solutions to the white roof puzzle.  Please share your ideas in the comment section below.

Community group involvement:  People who have black asphalt roofs may not know that their roof gets as hot as 150°F in the summer, or that a simple white roof coating would fix the problem.  Community leaders could work with roofing companies to advertise the benefits of white roof coating—soliciting testimonials from those who already have a white roof—and its modest cost.  By aggregating the orders of a number of homeowners at a time, a community group could request bids from roofing companies and obtain a lower price for the work.  The challenge here is that community leaders are already busy pursuing other initiatives.

Residential “PACE” financing:  As states and cities gain experience with commercial PACE financing (i.e., “property-assessed clean energy” financing to fund energy-saving measures on commercial buildings), more states and cities are now adding residential PACE financing, to allow homeowners to borrow money for approved energy-saving expenses.  In a PACE program, a building owner’s loan repayments are billed via their property tax bill.  PACE financing could help homeowners who don’t have adequate savings to pay for white roof coating.  By making financing easier, it could also expand the market for white roof coating, and with a larger market, roofing companies might be more inclined to advertise the service.  The challenges are that some states have not yet enabled residential PACE financing, and in states that have done so, launching a city PACE program takes time and energy.

Leapfrogging to rooftop solar:  As the cost of rooftop solar installations decline, this solution becomes economical in more locations every year.  A rooftop solar system that effectively shade the roof, and does not radiate much heat to the roof, would effectively keep the roof cool.  In some locations the electricity cost savings provided by a solar panel system could pay for the system and its financing costs.  The challenge is the same as the basic challenge for white roof coating: how to persuade homeowners and landlords to take this step.

A new public health law:  Landlords who don’t pay their tenants’ air conditioning bills are under no pressure to apply a white roof coating to their properties and thus improve their tenants’ health.  Cities could institute a public health measure requiring white roof coating.  Then, if a landlord failed to comply, the city could coat the roof white and bill the landlord via the property tax bill.  (In my suburban town, letting your grass grow tall is considered a public health problem, and if you don’t cut your grass the city may cut it for you, and bill you for the work.)  The challenge is that to my knowledge no city has yet recognized hot roofs over bedrooms as a public health issue.

Other ideas:  What is missing here?  What are your ideas?  Please share them in the comments section below.

A Fast Solar Ramp in Hawaii Can Save $3-7 Billion

By Will Driscoll

Hawaii can save $3 to $7 billion by accelerating its transition to solar, according to an independent utility modeling analysis.  That conclusion is validated by the experience of the Hawaiian island of Kauai, where a new solar-plus-storage park will bring down the island’s electricity rates. 

A new state law in Hawaii advances its commitment to pursuing renewables aggressively, so now it’s up to Hawaiian Electric to verify the massive $3-7 billion savings potential from an aggressive solar transition, and then pursue that path.

Savings of $3 to $7 billion

Hawaii’s legislature has set a goal of 100 percent renewables by 2045, and Hawaiian Electric Industries is pursuing a state-approved plan to meet that goal.

Yet a new study of Hawaii’s grid by the Rhodium Group found that moving faster on solar (with minimal growth in other renewables) would save Hawaii $3 to $7 billion between 2020 and 2045.

Whereas Hawaii on its current path would reach 40 percent renewables by 2030, the study found that the least-cost path would achieve 46 percent renewables just three years from now, by 2021, and then 58 to 84 percent renewables by 2030.

The range in savings, between $3 and $7 billion, reflects two bounding analyses: 1) moderate renewables costs combined with low oil prices (for $3 billion in savings); and 2) low renewables costs combined with high oil prices (for $7 billion in savings).  (Hawaii generates most of its electricity using imported oil.)

Beyond solar, the study found that Hawaii would need “up to two gigawatts of lithium-ion battery or functionally equivalent storage in 2030” to achieve the least-cost energy system. Kauai has shown the way here, as it is relying on battery storage provided by Tesla and the AES Corporation to store solar power for later release onto the grid.  (The study’s methodology is described in a technical note below.)

Kauai’s new solar-plus-storage park will bring down electricity rates

Kauai, where a member-owned co-op utility provides the power, shows how easy it is to adopt renewables quickly. Kauai has advanced from 8 percent renewables in 2011 to 44 percent now.

That’s well above the 27 percent for the rest of Hawaii, which is served by Hawaiian Electric.

Kauai aims to generate 50 percent of its electricity from renewables by 2023, and 70 percent by 2030. That 70 percent figure is the approximate midpoint of the 58 to 84 percent range found in the Rhodium study to be the least-cost range for Hawaii as a whole by 2030.

The cost of electricity from a new AES-built solar-plus-storage system on Kauai will be 11 cents per kilowatt-hour—significantly lower than the 14.5 cents per kWh for Tesla’s system just two years ago—and “will provide downward pressure on rates,” said the Kauai utility’s CEO David Bissell.

The Government of Hawaii wants affordable electricity and rapid integration of renewables

Hawaii’s governor recently signed a law providing that by 2020 the public utilities commission must set performance incentives and penalties to tie an electric utility’s revenues to its achievement on performance metrics—breaking the direct link between investment levels and allowed revenues. Two of the key performance measures align with the solar progress in Kauai and the results of the Rhodium Group study—namely, affordability of customer electric bills, and rapid integration of renewable energy.

Hawaii’s elected officials have been concerned about Hawaiian Electric at least since 2015, when 40 elected officials called for a study of publicly owned electric utilities, as on Kauai, for all of Hawaii.

The Rhodium Group study itself indicated interest across Hawaii in accelerating solar, as it gained the participation of Hawaiian stakeholders in 200 hours of focus groups and interviews, and was funded by a Hawaiian technology firm incubator, Elemental Excelerator.

It’s now up to Hawaiian Electric to verify the projected $3-7 billion savings, and pursue a fast solar ramp

The best course for Hawaiian Electric would be to run the Rhodium Group’s numbers through its own utility model to develop its own estimate of the cost savings possible from a fast renewables ramp. If Hawaiian Electric does not yet have a sophisticated utility planning model for this purpose, which includes, for example, battery storage as an option, the utility would be wise to first upgrade its planning model, and then re-run the Rhodium Group’s analysis. Or, if Hawaiian Electric’s most recent planning analysis, as reflected in its December 2017 Power Supply Improvement Plan, was limited by any artificial constraint on the amount of solar that it would allow, the utility would do well to re-run its analysis without any such constraint.

Assuming that Hawaiian Electric confirms the Rhodium study’s results—which Kauai’s experience already validates—then it should roll out an aggressive solar ramp. To its credit, Hawaiian Electric has been working with the National Renewable Energy Laboratory to understand how it can best modernize its island grids to incorporate low-cost solar. Hawaiian Electric could now quicken its pace to accelerate its renewables transition. Its customers would be happier paying less for electricity, and Hawaiian Electric could receive performance incentives, rather than pay penalties for failing to meet performance metrics, under Hawaii’s new state law.


Technical Note: 
The Rhodium Group study simulated Hawaii’s grid using a modified version of SWITCH, an “open source optimization modeling platform,” which contained detailed representations of the electric grid on Hawaii’s four most populous islands. For oil price scenarios, the study used the upper and lower bounds of electric power sector diesel and residual fuel oil prices in Hawaii between 2006 and 2017. For renewable price scenarios, the study started with renewable energy costs assumed by Hawaiian Electric in its December 2017 Power Supply Improvement Plan. Then, to account for future cost reductions for renewables due to technological improvements and economies of scale, the study “scaled those prices to projections from NREL’s mid-cost and low-cost scenarios.” The study’s authors then ran the modified version of the SWITCH model to find the least-cost energy system for 1) moderate renewables costs combined with low oil prices, and 2) low renewables costs combined with high oil prices.

Global Battery Production Capacity Must Grow 21 Times To Electrify The Global Vehicle Fleet

By Will Driscoll

  • Market and policy forces may drive a global transition to electric vehicles.
  • Current and planned global battery manufacturing capacity is 313 gigawatt-hours per year.
  • An estimated battery manufacturing capacity of 6600 gigawatt-hours per year would be needed to electrify the global vehicle fleet.
  • That is about 21 times the current capacity.

Vehicle manufacturers are announcing plans for new and improved electric vehicle models on a seemingly daily basis. For passenger vehicles, the appeal is improved performance and lower operating costs; as prices fall, consumer demand will expand. For trucks and city buses, the appeal is lower life cycle costs and, especially for buses, cleaner air.

Nations may favor electric vehicles to reduce oil imports and protect the climate. Indeed, stabilizing the climate will require electrifying the global vehicle fleet and powering vehicles with solar and wind power.

Current and planned global battery manufacturing capacity is 313 gigawatt-hours (GWh) per year

The world’s major battery manufacturers include Panasonic, LG Chem, Samsung SDI, and Chinese newcomer CATL. These and other battery makers have an existing and planned manufacturing capacity of 313 GWh per year, according to Bloomberg.

About 6600 GWh of battery manufacturing capacity would be needed to electrify the global vehicle fleet

This analysis considers heavy commercial vehicle (HCV) trucks, medium commercial vehicle (MCV) trucks, city buses, passenger vehicles, and commercial vehicles made by auto manufacturers.

Because electric vehicles driven many hours per day achieve the greatest operating savings, fleets of trucks and buses are the strongest candidates for electrification, and thus are considered first.

Electric HCV trucks would require 900 GWh of battery manufacturing capacity

Deloitte projects that 1.8 million HCV trucks will be sold annually by 2026, while a Tesla Semi HCV with a range of 500 miles has been estimated to require a 500 kilowatt-hour (kWh) battery. Multiplying the two values yields an estimated 900 GWh of battery manufacturing capacity needed for HCV trucks. (Note that one million kWh equals one GWh.)

Electric MCV trucks would require 180 GWh of battery manufacturing capacity

Deloitte projects that 0.90 million MCV trucks will be sold annually by 2026, while Volvo plans an electric MCV with a 200 kWh battery. Multiplying the two values shows that about 180 GWh of battery manufacturing capacity would be needed for MCV trucks.

Electric city buses would require 50 GWh of battery manufacturing capacity

Bloomberg projects that 0.18 million city buses will be sold annually by 2025, while Proterra offers an average 275 kWh battery pack size for its city buses. Multiplying the two values shows that about 50 GWh of battery manufacturing capacity would be needed for city buses.

Passenger vehicles would require 3550 GWh of battery manufacturing capacity

An automaker’s association estimates that 71 million passenger vehicles were sold in 2017, while the standard Tesla Model 3 will have a 50 kWh battery pack. Multiplying the two values shows that an estimated 3550 GWh of battery manufacturing capacity would be needed for passenger vehicles.

Commercial vehicles made by auto manufacturers would require 1950 GWh of battery manufacturing capacity

An automaker’s association estimates that 26 million commercial vehicles were sold by automakers in 2017. This analysis assumes that on average they would have a battery capacity 50 percent larger than that for a passenger vehicle, or 75 kWh. Multiplying the two values shows that about 1950 GWh of battery manufacturing capacity would be needed for commercial vehicles.

Summing the capacity needed across the five vehicle types = 6600 GWh needed

Summing across all vehicle types shows that an estimated 6600 GWh of battery manufacturing capacity would be needed to electrify the global vehicle fleet.

Dividing 6600 by 313 (which is the current plus planned battery manufacturing capacity) shows that capacity must grow about 21 times to meet that target.

China’s Electric Buses Will Cut Global Oil Consumption By 0.5 Percent

By Will Driscoll

Shenzhen has replaced its diesel buses with 16,000 electric buses, and authorities there have determined that the electric buses will eliminate the use of 345,000 tons of diesel fuel per year.

China is promoting electric buses to improve urban air quality and cut greenhouse gas emissions.  Because electric buses are far more efficient than diesel buses, net CO2 emissions will decline significantly even with fossil-fired electricity generation.

Bloomberg has projected that China will have 1.2 million electric city buses by 2025.  To support the manufacture of electric buses, China has a large and growing battery manufacturing capacity.

In 2016 the world consumed 97 million barrels of oil per day, or 35 billion barrels of oil per year. Scaling up the savings of diesel fuel from Shenzhen’s 16,000 electric buses to China’s projected 1.2 million electric buses—and converting the units from tons to barrels—shows that China’s electric buses will eliminate the use of 194 million barrels of oil per year.

Simple division shows that China’s electric buses will reduce global oil consumption by 0.5 percent.

The impact of China’s electric buses on global oil consumption is a leading indicator of the changes to come, as the world transitions to 100 percent clean renewable energy.

Dominion’s Wires Are Its Only Natural Monopoly; Let Engineering Firms Build Low-Cost Solar, Wind

By Will Driscoll

Many firms have more experience than Dominion Energy in building solar and wind farms and connecting them to the grid.  And these other firms provide the lowest prices for solar and wind, as seen in Tucson’s and Austin’s recent solar costs below 3 cents per kilowatt-hour, and Lazard’s estimated 3 to 6 cents per kilowatt-hour for onshore wind.

Dominion’s relative strength is in maintaining the electrical transmission and distribution grid.  There is no sense in building a second grid, so Dominion has a natural monopoly there.

State legislation can promote low-cost renewable electricity by starting from this foundation. Let big, reliable firms that can build low-cost solar and wind for Virginia do so, competing with each other to provide the lowest cost. Let Dominion run the grid.  And to make sure we get the lowest prices for solar and wind, don’t allow Dominion to bid, so that it can’t rig the bid requirements in its favor. (A Dominion subsidiary could still bid on solar and wind farms in other electric utility territories.)

Dominion has become better qualified to run the grid, as it has recently adopted a renewables-friendly grid planning and management software called Plexos.  With this sophisticated tool, Dominion should no longer have the difficulties its executive Robert Thomas expressed in 2016 when he said a high-solar option “could create reliability issues.” Now, Dominion can use Plexos to plan a renewables-integrated grid.  And each day Dominion can take day-ahead weather forecasts and run them through Plexos to develop a round-the-clock “unit commitment” plan for the following day. With this new capability, Dominion can join the ranks of well-managed high-renewables utilities in Iowa, South Dakota, California and Europe.  Adding cost-effective storage to the grid, from the likes of Virginia’s AES, will make running the grid even easier, by helping to balance solar generation and end-use demand.

State legislators can do their part to bring low renewable electricity prices to Virginia, like those seen in Tucson and Austin.  The key is to pass laws that focus Dominion on running the grid, and that leave solar and wind farm development to firms specializing in EPC (engineering, procurement and construction) that are willing to bid in an unfettered competition.

Recover High-GWP Refrigerants, Favor Low-GWP Refrigerants to Limit Climate Damage

By Will Driscoll

To limit climate damage from refrigerants with a high global warming potential:

  • States may require leak testing and leak repair of equipment using refrigerants, as California now requires for large equipment (see section 5 below).
  • States may also have authority to require that when equipment using refrigerant will no longer be used, that its refrigerant be recovered and either destroyed or reclaimed (recycled). A financial incentive or a refundable deposit could boost voluntary compliance.
  • Environmental groups may encourage people to choose equipment with low-GWP (global warming potential) refrigerants, such as R-1234, which has a GWP of 4 to 6 (see table below). This equipment includes vehicles, heat pumps, air conditioners, refrigerators, freezers, and dehumidifiers.

The following sections first describe various refrigerants, and then review refrigerant management policy at the global, U.S., and E.U. levels, and in California.

  1. Selected Refrigerants: Phased Out, In Use, and Under Consideration
Refrigerant Global Warming Potential (GWP)*,** Status
CFCs   Phased out under the Montreal Protocol
HCFCs   Being phased out
HFCs   Widely used
HFC: R507 3300 US: Were to be phased out via EPA’s 2015 and 2016 rules.*** A three-judge panel of the U.S. Court of Appeals for the District of Columbia Circuit struck down the 2015 rule.  That ruling has been appealed to the full en banc panel of the same appeals court.
HFC: R404A 3260
HFC: R410A 1725 US: Was to be partially phased out via EPA’s 2015 and 2016 rules;*** see above.
HFC: R407 1525
HFC: (R)134a 1430 US: Was to be phased out in light-duty vehicles via EPA’s 2015 rule, which is now in the courts—see above.
HFC: 152a (R152a)   124  
HFO 1234 (R-1234)       4 Now used in some vehicle air conditioners
“Natural refrigerants”: CO2 (R744) and ammonia (NH3) CO2: 1 Daimler and Volkswagen are evaluating CO2 for vehicle air conditioners.****

Note: The “R” refrigerants are a blend of two different HFC compounds, except for R744 (CO2).

* http://www.ipcc.ch/ipccreports/tar/wg3/index.php?idp=144

** https://www.epa.gov/mvac/refrigerant-transition-environmental-impacts

*** https://www.chemours.com/Refrigerants/en_US/assets/downloads/opteon-refrigerants-us-epa-snap-regulations.pdf

**** https://refrigeranthq.com/epa-announces-phaseouts-of-hfc-refrigerants/

  1. Global Policy

The Montreal Protocol’s Kigali Amendment of 2016, which requires a global phasedown of HFCs, will enter into force on January 1, 2019: https://ec.europa.eu/clima/news/eu-countries-trigger-entry-force-kigali-amendment-montreal-protocol_en.  “Under the amendment, developed countries will reduce HFC consumption beginning in 2019”: https://www.epa.gov/ozone-layer-protection/recent-international-developments-under-montreal-protocol.  The amendment apparently does not address HFC recovery and destruction: http://ozone.unep.org/sites/ozone/files/pdfs/FAQs_Kigali-Amendment.pdf.

  1. U.S. Policy

EPA issued two HFC phase-out regulations in 2015 and 2016.****  The “Final Rule Revising the Section 608 Refrigerant Management Regulations” made “changes to the existing requirements under Section 608 [including] … 1) Extends the requirements of the Refrigerant Management Program to cover substitute refrigerants, such as HFCs”: https://www.epa.gov/section608/revised-section-608-refrigerant-management-regulations.

A three-judge panel of the U.S. Court of Appeals for the District of Columbia Circuit ruled on August 8, 2017 that the U.S. EPA does not have authority under Clean Air Act Section 612 to regulate HFCs.  Refrigerant manufacturers and the NRDC have appealed for a rehearing of the case by a panel of all the appeals court judges of the DC Circuit (an “en banc” panel).

Prior EPA regulations require recovery of ozone-depleting refrigerants when existing equipment is removed, with the refrigerants sent out for destruction or reclamation (recycling): https://www.epa.gov/sites/production/files/documents/ConstrAndDemo_EquipDisposal.pdf.

The amounts recovered each year from 2000-2016 are shown here: https://www.epa.gov/section608/summary-refrigerant-reclamation.

EPA-certified refrigerant reclaimers are shown on this list: https://www.epa.gov/section608/epa-certified-refrigerant-reclaimers.

  1. E.U. Policy

The E.U. adopted a regulation in 2014 to phase out HFCs, and encourage refrigerant recovery and destruction at the end of a unit’s service life. (EU regulation 517/2014).  “Member States shall encourage the development of producer responsibility schemes for the recovery of fluorinated greenhouse gases and their recycling, reclamation or destruction.” http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0517&from=EN

  1. California Policy

The California Air Resources Board (CARB) Refrigerant Management Program requires commercial and industrial facilities with a refrigeration system using more than 50 pounds of a high-GWP refrigerant (including HFCs) to register with CARB, to test for leaks, and if a leak is detected, to repair, retrofit or retire the equipment.  The program apparently does not address refrigerant recovery and destruction.  https://www.arb.ca.gov/cc/rmp/RMP_Program_FAQ.pdf

 

Wind Power Could Accelerate to Meet Half the World’s Energy Needs in 24 Years

Screen Shot 2018-01-18 at 3.50.36 PM

By Will Driscoll

Increasing global wind power installations by 20 percent each year would yield six terawatts of wind power globally by 2030.  Then, maintaining global wind installations at the 2030 level for 12 more years would yield 18 terawatts of wind installed by 2042.  (This growth trajectory is modeled on an analysis of solar power’s potential trajectory, published in Science magazine* and discussed here.) Eighteen terawatts of wind power in 2042 would be enough to meet half the world’s energy needs for current uses of electricity, plus transportation and heating.**  If solar power provided the other half, we could have 100 percent renewable energy for all energy needs by 2042—twenty-four years from now.

Increasing wind power installations at 20 percent per year through 2030 would be a midway point between a potential 29 percent annual increase in solar installations through 2030, deemed “challenging but feasible” in the Science magazine analysis, and a potential 12 percent annual increase in wind installations through 2030 projected by the Global Wind Energy Council.

The wind industry’s increasing scale (see bar chart) has already yielded cost reductions that buyers find attractive; indeed, low-income China is a major market. And history shows that the wind industry can scale up at a 20 percent rate through 2030.  As related in MIT’s report The Future of Solar Energy, “military aircraft production in the U.S. grew by one-to-two orders of magnitude between 1939 and 1944, highlighting the tremendous level of growth that is possible for commodity-based goods.”  Moreover, the wind industry uses automated manufacturing techniques not available in the 1940s.

The feasibility of a 20 percent annual growth rate also makes intuitive sense.  For every five factories a wind turbine manufacturer owned, next year it would need to build and equip another factory—that would be a 20 percent growth rate.

The wind industry needs more than the technical potential to grow at this rate, however.  It also needs a growing backlog of orders for wind turbines, to give manufacturers confidence that if they build wind turbine factories, the customers will come.  In the solar industry, for example, First Solar pointed to 2017 orders of three times its shipments to justify its plan to double its solar panel manufacturing capacity over the next three years (which represents a compound growth rate of about 29 percent per year).  Conversely Vestas, the world’s largest wind turbine maker, reporteda stable backlog and no plans to increase its manufacturing capacity.

To persuade the wind industry as a whole to plan for ever-increasing additions to manufacturing capacity through 2030, we need to keep modernizing the electric grid so that more and more wind farms may be interconnected, and the electricity they produce can be transmitted to end users.  Indeed, we need to show the wind industry that we are committed to this grid modernization process over the next 24 years.  After all, U.S. military aircraft manufacturers in the 1940s had a ready buyer: the U.S. Government.  Low-cost wind turbines will keep finding ready buyers only if those buyers have a way to connect to the grid, and transmit, distribute and sell their wind-powered electricity.  The extent of grid modernization required represents a major infrastructure transition, and so we will need many more people to become educated, trained, and employed in this field.

Since many electric utilities are dragging their feet on wind power, and are not being guided by their state regulatory agencies to take advantage of wind power’s low and still-falling costs, we need to keep up the pressure on electric utilities and their regulators in order to achieve wind power’s promise.

Here is one possible sequence of overlapping steps:

  • “Unblock” wind power:  Eliminate groundless regulations and pricing structures that prevent or penalize wind generation.
  • Institute variable time-of-day pricing for electricity to encourage the use of electricity when the wind is strongest, to facilitate the use of all wind power generated.
  • Enact energy-efficient building codes so that new buildings use cost-effective energy-conserving construction materials and techniques.
  • Promote distributed storage of electricity, to enable existing transmission lines to deliver power to distribution-level electricity storage when generation is high, and enable the distributed storage to help meet local electricity demand at periods of peak demand.
  • Stop investing in fossil infrastructure.  This includes pipelines, fossil-fired electric generating units, fracking wells, and new gasoline-powered cars, buses, and trucks.  Use the money instead to modernize the electric grid; install wind and solar power; install storage; and buy battery-powered vehicles, as well as electric heat pumps instead of fossil-fired furnaces.
  • Price carbon.  Eliminate fossil fuel subsidies and institute a carbon tax equal to the health and global warming costs of fossil fuels; this would level the playing field between wind power and fossil-generated electricity.
  • Build an electric vehicle charging infrastructure, to accommodate long-distance travel by electric vehicles.
  • Build more transmission lines as needed, possibly along existing rights-of-way, to bring wind and solar power from rural to urban areas.
  • Develop cost-effective means to store heat, e.g., in rocks held in insulated underground structures, for use in winter-time heating.

The Global Wind Energy Council also made policy prescriptions, which are more narrowly focused on removing barriers to corporate purchases of wind power:

  • “Where there are direct prohibitions on third party PPAs [power purchase agreements], or prohibitions from purchasing power from anyone other than the centralized (usually state-owned) utility, they should be removed.
  • Corporate PPAs and direct sourcing should be included in general electricity market regulatory schemes.
  • Transmission system wheeling (and banking, if appropriate) should be facilitated at reasonable prices, rather than being made too difficult and expensive.
  • Governments could/should take an active role and encourage corporate buyers to assist in meeting government RE [renewable energy] and emissions reduction targets.
  • Competition regulators should engage and issue guidance to corporates seeking to enter the market, creating rules which support these efforts, while at the same time maintaining the integrity of the market.
  • Some governments have stepped up and created renewable power purchase procurements for themselves, and governments are often significant purchasers of power; more should be encouraged to do so.
  • Finally, as is always the case, policy stability is critical. Power sector investments are long term, and the policies that support them must be as well.”

The Science Magazine article had 21 co-authors: seven from the U.S National Renewable Energy Laboratory, four from the comparable German agency Fraunhofer ISE, three from Japan’s comparable National Institute of Advanced Industrial Science and Technology, two from solar manufacturers, two from solar certification or research firms, and two from universities.

For those seeking to obtain the article at a university library or by inter-library loan (to avoid the $40 Science Magazine subscription fee), the article is “Terawatt-Scale Photovoltaics: Trajectories and Challenges,” Science 356 (6334), April 14, 2017, pp. 141-143.

** Here’s the calculation:  Wind turbines generated 4 percent of the world’s electricity in 2016.  For wind to provide 50 percent of current electricity needs, we would need (50/4) = 12.5 times as much wind power as we had in 2016.  At year-end 2016, the world had 487 gigawatts of installed wind power. Twelve and a half times that amount is about 6,000 gigawatts, or 6 terawatts.  If the global installed base of wind power grew by 20 percent per year, starting at 487 gigawatts in 2016, we would reach 6 terawatts of wind power by 2030 (you can check that result in Excel, or with a calculator).  That would meet half of current needs for electricity.  To electrify 50 percent of transportation (with electric vehicles) and heating (with heat pumps) would each require about the same amount of electricity—for a total need of about 18 terawatts of wind power, to meet half the world’s total energy needs.

Image: REN 21: Renewables 2017 Global Status Report

Solar Power Can Accelerate to Meet Half the World’s Energy Needs in 20 Years, Say Scientists

Screen Shot 2018-01-18 at 3.54.23 PM

By Will Driscoll

Increasing global solar installations at 29 percent per year is a “challenging but feasible” rate that would yield 10 terawatts of solar installed by 2030.  Then, maintaining global production at the 2030 level for eight more years would yield 30 terawatts of solar installed by 2038.  That’s according to an analysis published in Science magazine*; it would be enough solar power to meet half the world’s energy needs for current uses of electricity, plus transportation and heating.**  If wind power provided the other half, we could have 100 percent renewable energy for all energy needs by 2038—twenty years from now.

The solar industry’s dramatic growth (see bar chart) has already yielded cost reductions that are attracting more buyers each year; indeed, low-income China and India have become major markets. And history shows that the solar industry can scale up at a 29 percent rate through 2030.  As related in MIT’s report The Future of Solar Energy, “military aircraft production in the U.S. grew by one-to-two orders of magnitude between 1939 and 1944, highlighting the tremendous level of growth that is possible for commodity-based goods.”  Moreover, the solar industry uses automated manufacturing techniques not available in the 1940s.

A 29 percent annual growth rate also makes intuitive sense.  For every three factories a solar panel manufacturer owned, next year it would need to build and equip another factory—that would be a 33 percent growth rate, or a few points better than 29 percent.

The solar industry needs more than the technical potential to grow at this rate, however.  It also needs a growing backlog of orders for solar panels, to give manufacturers confidence that if they build solar panel factories, the customers will come.  First Solar, for example, pointed to 2017 orders of three times its shipments to justify its plan to double its solar panel manufacturing capacity over the next three years (which represents a compound growth rate of about 29 percent per year).

To persuade the solar industry as a whole to plan for ever-increasing additions to manufacturing capacity through 2030, we need to keep modernizing the electric grid so that more and more solar farms may be interconnected, and the electricity they produce can be transmitted to end users.  Indeed, we need to show the solar industry that we are committed to this grid modernization process over the next 20 years.  After all, military aircraft manufacturers in the 1940s had a ready buyer: the U.S. Government.  Low-cost solar panels will keep finding ready buyers only if those buyers have a way to connect to the grid, and transmit, distribute and sell their solar electricity.  The extent of grid modernization required represents a major infrastructure transition, and so we will need many more people to become educated, trained, and employed in this field.

Since so many electric utilities are dragging their feet on solar, and are not being guided by their state regulatory agencies to take advantage of solar’s plunging costs, we need to keep up the pressure on electric utilities and their regulators in order to achieve solar’s promise.

Here is one possible sequence of overlapping steps:

  • “Unblock” solar:  Eliminate groundless regulations and pricing structures that prevent or penalize solar installations.
  • Institute time-of-day pricing to encourage the use of electricity when the sun is shining, to facilitate the use of all solar power generated.
  • Enact energy efficient building codes so that new buildings use cost-effective energy-conserving construction materials and techniques.
  • Promote distributed storage of electricity, to enable existing transmission lines to deliver power to distribution-level electricity storage when generation is high, and enable the distributed storage to help meet local electricity demand at periods of peak demand.
  • Stop investing in fossil infrastructure.  This includes pipelines, fossil-fired electric generating units, fracking wells, and new gasoline-powered cars, buses, and trucks.  Use the money instead to modernize the electric grid; install solar and wind power; install storage; and buy battery-powered vehicles, as well as electric heat pumps instead of fossil-fired furnaces.
  • Price carbon.  Eliminate fossil fuel subsidies and institute a carbon tax equal to the health and global warming costs of fossil fuels; this would level the playing field between solar and fossil fuels.
  • Build an electric vehicle charging infrastructure, to accommodate long-distance travel by electric vehicles.
  • Build more transmission lines as needed, possibly along existing rights-of-way, to bring solar and wind power from rural to urban areas.
  • Develop cost-effective means to store heat, e.g., in rocks held in insulated underground structures, for use in winter-time heating.

These overlapping steps are broadly consistent with the view of the U.S./German/Japanese solar research consortium GA-SERI, which was largely responsible for the Science magazine analysis.  As GA-SERI stated in a press releaseaccompanying the article:

“GA-SERI’s experts predict 5-10 terawatts of PV capacity could be in place by 2030 if these challenges can be overcome:

  • A continued reduction in the cost of PV while also improving the performance of solar modules
  • A drop in the cost of and time required to expand manufacturing and installation capacity
  • A move to more flexible grids that can handle high levels of PV through increased load shifting, energy storage, or transmission
  • An increase in demand for electricity by using more for transportation and heating or cooling
  • Continued progress in storage for energy generated by solar power.”

The Science Magazine article had 21 co-authors: seven from the U.S National Renewable Energy Laboratory, four from the comparable German agency Fraunhofer ISE, three from Japan’s comparable National Institute of Advanced Industrial Science and Technology, two from solar manufacturers, two from solar certification or research firms, and two from universities.

For those seeking to obtain the article at a university library or by inter-library loan (to avoid the $40 Science Magazine subscription fee), the article is “Terawatt-Scale Photovoltaics: Trajectories and Challenges,” Science 356 (6334), April 14, 2017, pp. 141-143.

** Here’s the calculation:  Solar generated 1.3 percent of the world’s electricity in 2016.  For solar to provide 50 percent of current electricity needs, we would need (50/1.3) = 40 times as much solar power as we had in 2016.  At the mid-point of 2016, the world had about 250 gigawatts of installed solar (see bar chart above).  Forty times that amount is about 10,000 gigawatts, or 10 terawatts.  That would meet half of current needs for electricity.  To electrify 50 percent of transportation (with electric vehicles) and heating (with heat pumps) would each require about the same amount of electricity—for a total need of 30 terawatts of solar, to meet half the world’s total energy needs.

Image: REN 21: Renewables 2017 Global Status Report